UCRL-ID-147343

Software in the DOE: The
Hidden Overhead of “The
Build”

G. K. Kumfert T. G. W. Epperly

February 28, 2002

U.S. Department of Energy

Lawrence
Livermore
National
Laboratory

="

Approved for public release; further dissemination unlimited

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and shall
not be used for advertising or product endorsement purposes.

This report has been reproduced
directly from the best available copy.

Auvailable to DOE and DOE contractors from the
Office of Scientific and Technical Information
P.O. Box 62, Oak Ridge, TN 37831
Prices available from (423) 576-8401
http:/ /apollo.osti.gov/bridge/

Available to the public from the
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Rd.,
Springfield, VA 22161
http:/ /www.ntis.gov/

OR
Lawrence Livermore National Laboratory

Technical Information Department’s Digital Library
http:/ /www.lInl.gov /tid /Library.html

Softwarein the DOE: TheHiddenOverheadf “The Build”!

GaryKumfertandTom Epperly

28 February2002

1Thiswork wasperformedundertheauspicesf theU.S.Departmenof Enegy by Universityof CaliforniaLawrencelivermore
NationalLaboratoryundercontractNo. W-7405-Eng-48ReleaséNumber:UCRL-ID-147343

Abstract

“The Build” is theinfragructureneede to corvert softwarefrom sourcecodeto usableform. It is intimatelytied to
the softwareit supportsknowing aboutevery file andautomatingevery transformatiomeededo producea working
program. Every developerknows thata projectspendssomelabor overheadon “the build.” How big is this hidden
overhead?

Accordingto 34 scientific software developerswe suneyed at LawrenceLivermoreNational Labs,amongcol-
leaguesat other DOE labs,anda handfu of academicghe “perceved” overheadaveragesaround12%. Individual
case®f 20%to 30%werenotuncommonln oneprojectclaiminga 20%overheadye found supportingevidenceby
combingthroughtheir CVS repository

Chapter 1

Intr oduction

The DOE spendssignificant resource®n software developmentanduse. This documentriesto quantify what per
centageof thoseresourcesreactuallyspenton build issuesnsteadof coredevelopment.By “build issues’we mean
thedevelopmentdehigging,maintenanceandextensionof thesupportingnfrastructurehatconvertssourcecodeinto
its end-usdorm. For mostprojects this meandVakefiles andafew helperscripts.For morewidely usedprojects this
canmeanorchestratingeveral tools, files, scripts,andotherparaphernaligo keepthe build working.

Thereis no easymetric for measuringhe build overheadn software. In Chapter2 we discussthe resultsof an
informal surney we conductedo verify that problemsassociateavith the build arewidespread For more objective
data,we examinea particularpieceof softwarein detailin Chapter3. Conclusonsandpossibledirectionsfor future
work arepresentedn Chapter4

Chapter 2

Survey

BetweerNovember2001andJanuan2002,we conductedsuney to betterunderstandhonv muchtimewasconsumed
by software build details. We knew up front that our survey could not definitively tell the percentageverheadfor
the build, sinceno respondats recordedthat kind of information. However, the survey canreflectthe perceived
overheadandindicateif thatoverheads suffereduniversally or limited to a few locations/projectsThe information
wasgeneratedby 19 respondentat LLNL, 12 from otherDOE laboratoriesand5 from Academia.These36 people
submitted39 responsesovering atleast28 separatgrojects.

The structureof this questionnairelesenessomeexplanation. Therewerethreedivisible sections. Thefirst (and
longest)section asked 15 questiongpertainingto a particularprojectthe respondentvorked on. Most respondents
answeredhis sectionfor the projecton which they spendmostof theirtime. A few respondentprovided responses
to this sectionfor morethanone projectwith eachprojecton a separatesurney. The seconl sectionhad only four
guestionsand wasparticularto theindividual; irrespectve of ary project. Thefinal sectionhadtheregpondentsiame,
projectname,andcontactinformation. Thesethreesedions were separaté andrandomizedo insurethe anorymity
of a particularresponseavhile allowing usto keepareasonableountof how mary actualprojectsarerepresentedn
somecasegsespondentshos notto nametheir project.

Our presentatiomf theresultsis divided betweermuestiongequiringa numericalresponse@ndopen-endedjues-
tions. For numericalresponsesaverageandmedianarepresentedable2.1. Theraw datais presentedh TablesA.1—
A.3in theappendix.Thenon-numeriagesponsearegroupedandlistedin Secton 2.1. Theoriginaltext of thequestion
andthe numberappearedn aking sequencés preseredbetweenTable2.1andSection2.1.

2.1 Written Responses

The following questionsvere open-endedin this sectionwe attemptedo itemize eachof theresponss. Responses
thatmademultiple pointswerebrokenoutinto separatéullets. We alsoconsolidategointsandaddeda multiplier to
theendwhentherewassuficientoverlap.

Question#10. Do you find the current build systemlimiting on this project?

No (x10)

No — malkeis fine

No — we just keepextendingit

No — ourthird iterationnow doeseverythingwe need.

No, but if moreautomaticjt would freeresourcegor otherthings
Not Really

Not very, butit is painful

Yes(x12)

Yes,configureneedsserioushelp.

Absolutely(x3)

Limiting in how it interads with otherbuild systemsgspecially3rd partylibraries

per ProjectQuestions

LLNL other DOE Academia
Mean Median| Mean Median| Mean Median
1. How mary FTE’s on this project? 7.8 5 3.3 2.3 12 9.5
2. | Whatpercentagef yourtime is spenton this project? 76.% 85.%| 66.% 60.%| 70.% 78.%
3. How mary configure/luild/packagingoolsdo you use? 2.7 2 3.2 3 2.3 2
4.a | How mary platformscurrently? 4.6 4 5.6 5 4.3 4.5
4.b | How mary additionalplatformsin the future? 1.5 2 .5 0 1 1
5. How mary programminganguagesn this project? 3.6 3 4.8 4 3.3 3.5
6. Regarding3rd partylibraries.. .
.a | ...how mary arerequired? 5.2 3 2.5 2 3.3 2
.b | ...how mary areoptional? 2.2 1 5.4 2 3.7 2
7 What percentagef your time spenton this projectis expended
onbuild issues?
.a | ...developmentime 19.% 10.% | 15.% 10.% 6.% 4.%
.b | ...overalltime 22.% 10.%| 17.% 11.%| 10.% 2.%
8. For the projectoverall, whatwould you estimatethe annualcost
for maintainingthis projects build (configure,releaseetc)?
.a | ...inFTE’s 9 3 .5 3 1.3 1.5
.b | ...aspercentagef project 11.% 10.% | 15.% 13.% | 16.% 15.%
9. Would you saythat this projecthad a significantstartupcostor | 12 3.5 8.3 4 14 12
one-timechagefor thebuild? If so,what?(in person-weeks)
12. How long doesthebuild take? (in hours)
.a ..min 1 D 2 1 .6 .6
b | omax 2 1 2 2 1.4 1
13. For eachof the build tools you use,pleaserateyour overall sat-
isfactionon a scaleof 1-10(1 = hateit! wantto rewrite from
scratch: 10 = wouldn't changat for theworld)
.a | ...shell 4.7 5. 4.3 4
b L. malke 5.5 5.5 5.3 5 5.2 6
.e | ...autoconf 5.2 6. 6 6 4.5 4.5
.f | ...automale 5.0 7. 3 1
14. Usingabove scale Pleasaateyour overall satishctionlevel with 5.5 5.5 5.8 6 5 4
your overall build system
per PersonQuestions
16. Youare goingto startanew project.How interestedvouldyou be 7.2 8 6.5 6 6.2 7
in trying anew setof build tools?(1 = nointerest 10=chonping
atthebit
17. What'’s the mostamountof time you spentfixing onebuild prob- | 21 3 4.3 1.5 4 3
lem?(in entirecareermeasuredn days)

Table2.1: Averagenumerichanswergrom suney.

Inefficient/Incorvenient,but notlimiting (x2)
Handchangeeverything!

Hardto sharewith otherusers

Overly comple

Toolsinsufficient

Requiresoo mucheffort

Our build is our biggestrisk to our projects success

| don't know ary different

Not onceits configured

It’ sfinally in prettygoodshape,but doeshave a few limitations
Requiredconfigfiles suppledthroughstaticmethods.
CannotkeepmalefilesandWindows projectfiles coordinated.

Question#11. What critical piece of functionality do you wish your current build system
had?

None(x8)

Flexibility/More amenat# to change(x3)

C++ precompilecheaders

Build C++ sharedibraries (x2)

Integratedtestingandbuild
Betterdependengcheckingandanalysis/fulldisclosurgx3)

Somethindessslow, awkward, andfragile

Handledmixedlanguageglink library issue)(x2)

Protectagainstheadersut of syncwith associatedibraries

Betterhandlingof dependecieson externalpackages
Betterdetectandconditionally compilecodeif anexternalpackagenasbeenprovided
Integratedtestenvironment

Lik e coordinatingmultiple developers

Currentlybuilds asanappication,wantto alsobuild aslibrary

Goto anew platformwithout finding wherelibrariesare,settingcompilerflags,etc (x3)
Automaticallydeterminehow discoveredlibrarieswerebuilt.

An elegantway of suckingcompiler options/namesor differentarchitecturesut of afile/database/someho
#includesearches

Handlesdependencieacrassdirectories(x2)

Lik e to have someautomale-lik e capabilities

Nice to have morestandarcconfigureoptions(e.g.conf i gure --prefi x)

Call systemadmins

Determinechangesn sysemconfiguration(i.e. whattools have changed)

Easierto understand/lear(x3)

Betteruserinterfacefor developers

Betterdependenceheckthantimestamps

Exportbuild/configureinformationto usersto USElibrariesafterthey’ve beeninstaled
Understandhatoneactioncansimultaneouslyproducemultiple targets

Add functionality to the project without exhaustindink-line buffer
Hierarchicalcomposabiliy (usingconfigurationof anincludedpackage)

More advancelanguagecongructs

Oursis afairly simply library, the build toolsareadequate

Make syntaxsucks— bette syntax

CompleteAutomation(in my dreams!)

Bettermanagementf dependeny files whena.h file goesaway

GUI / moreinteractive feauresfor userg(x2)

Betteroptionthanextremdy long commandines of optionsto configure

Easilyhandlea singletreewith sources,o0’s, andbinariesfrom multiple platforms.

A configurescript. We scarea lot of potentialusersaway assoonasthey realizewe expectthemto edit our
malefiles.

Identicalbuild on NT andUnix

Coordinateestingon all platformsat once.

Updatewindows projectfile whenfiles areadded/remeed from repository

Warnaboutnon-standardunction calls, without wadingthroughstuff you flag asknown platformspecific.

Question#15. What would it take for this project to switch to a differ ent build tool?

Move mountains.Soingrained.

Seeanothelprojectcorvertad to new tool in actionfirst. (x2)

At leastasflexible aswhat I'm usingnow.

CrossPlatform(x2)

Easierto use(x2)

Realtransitioneasel ow adoptioncost(x3)

IDE

Runon line-orientedUnix machines

Clearadwantage

Stable

Recognizegieceof software

Significantusergroup

Currentbuild would have to breakfirst

Someoneloit for us

Mediumresistance

Cleaner bettersyntax

Easilybuild sharedibrariesacrossplatforms

Funry you shouldask,we’re in the procesof switchingtoolsright now. (x3)
Make my lunch

Goodmarketing

Vendorchangecontrols

Unlikely

No compellingreasorright now, but mayrevisit whenin productionmode
Supportall our platforms

Betteruserinterface

Prove atime/efort saving

Addresstheissuesabove

Unpackon standardJNIX withoutspecialstuff

My retirement

Significantlysimplifiedbuild files, packagedependencies

A lot — how muchtime do | have to spendearningthe new thing?
Nothingfor this project,but would usesomethingnew for anew project
Lessoverall effort — A completeswap out to a new systemmust costlessthanthreetweaksof my current
systempr elsel’d just keep tweaking

No way in Hell

Must handleparallelbuilds acrosddirectorie(our currentsystemdoes)
Must satisfyall our needsandbeclearly simpler/better

Supplementake

Dependsn compleity of build tool

Corvincemeit will save ustime

Replicateeverythingwe alreadydo

ResourcesWe have limited resourcesonsideringeverything we needto do. Re-engineeringhebuild systemis
not “research’for us,soa compellingamgumentmustbe madethatthe costwill free up resourcesn thefuture.

Quitefrankly, thetool would have to becustombuilt for ourproject. It seemghatary alternatve thatcouldmeet
our diverseneedq extremelydiverseplatformsandconfigurationspn-siteandoff-site, customtool integration,
etc.)would eitherbe moreclumsythanwhatwe do now, or it would requireperson-yearsf effort to customize
to ourervironment.l don't have muchfaithin all-in-onetoolswhenyou've got suchawide arrayof neels,and
this questionsounddik e an adwertisemenfor anall-in-onetool.

Question#18. Do you have a favorite war story about building software?

No, but building anddocumeting sucksbig time.

No comment(x4)

Yes

Many Scars

Too mary to chosefrom

Wrote own versionof make in 1982

Oncehadthreeprojectsnot talking togetherandhadto configure/lnild with onesysten
Many war stories— no favorites

Magic numberissues

Working w/ librariesis had.

Linkersaregetting“better”

C++templatesarea greatidea,but they really suck! Peopledo workaroundssedexpansiongemplateinstanti-
ations,andbreakstuf BIG time.

Changesomethingandthe otherfiles don't get|sic]

e Build for oneplatformeragsall othersin theinstallationdirectory
e | oncespenta weektrackingdown a three charactettypo. The compilerflag was missingfor a “handful” of

compilationunitsandinducedafailureonly atruntime.

| tried to write anautoconf/configuréestfor Tcl/Tk installation- startedfrom a cannedestin anothempackage
(the cut & pasteapproachto autoconf,the only way to go!). Turnsout my own home Tcl/Tk installation
couldnt be recognized. | spentquite a while trying to tweak the configurescript, only to discover that all
along(for years!) | hadbeean doinga “make” on Tcl/Tk, but never the subsequert'make install”, somy local
configurationwas"“off the chart” in termsof whereto find certainfiles, etc.

Of coure, | decidedto leave my Tcl/Tk setupasis, andmalke the configurescriptwork for it, justto cover all
the other poor bastardout therewho were also omitting that final “make install” stepfor Tcl/Tk...! It's one
gruesomeonfiguretest,but it works!

Question#19. Comments?

Peopleareundereducaterk: autoconfandautomale. Aggravationcomesfrom misuse.

If thereexistsabettertool, we shouldbe usingit.

| amvery frustratedwith the time | wastewriting malkefiles

Very hardto evolve usingcurrenttools. If you orderdirectoriesoneway andwantto changeayearlater, you're
hosed.

Making changess harderthanit shouldbe downstream.

Separatanswerdrom BIG projectsfrom thoseof smallprojects.

Have to write lots of scrips — male is insufficient.

Hate autoconf,resultingconfig scriptsfail 50% so | have to hackit...or ...l pass160 charctersof mystical
optionsto getit to work.

No known build tool allows specifyinghigh-level targettypes. Automale predefinegransformationsywantuser
defined.

Choosenuild systemwisely

Betterdesigncodearoundthe build systemthanadaptbuild systemafterthefact.

Tendto expectwhatwe have. Communicatingpenefitas importantto overcomeinertia of existing tools.
Portabilityis abig issue.

Whenever building 3rd party software, | expectthereto be problems. | expectto tweak malkefilesand even
sourcecode.

e Theresnoassertiorcapabiities. . . no easyway to suspendndqueryuserfor guidane.

e The problemswith the UNIX ernvironmentare not the simpletools, its the non-unifornity in compilers. The
problemsaresystemicto UNIX, notenoughstandardization.

e I'm skepticalof toolsthatarent “built-in” on systemslike malkeis.

e CASEtoolsarepricey, but candrasticallyimprove developemproductvity. . . of coursejf distribution of software
is via sourcecode thisis notanoption.

e Researckervironmentstend to preferspendingnone/ on peoplethangoodsoftwaretools.

e Automaticallygeneratednalefilesarea mixed blessing.Many usersare not assophisticatedsthey think in
“fixing” them.And of courseary correctchangecant befed backupstreanto the makefile generatar

e Wanta consisteng checler, whereyou make a changen the Makefilesandcanseehow thatchangecascades
throughthe build process.

¢ | reallyhopethere’s somethingbetterto be made.My fearis thatit would betoo comple, evenworsethanwhat
we alreadyhave.

¢ Pleasdlastoutthefindingsof this survey whenthey're done!!!

2.2 Discussion

Several piecesof informationfrom Table 2.1 desere highlighting. The overall averageand medianbuild overhead
(Question8.b) are11.91%and10%, respectiely, with a maximum35.71%anda minimum of 0%. Brokendown by
groups:the averageandmedianare 10.42%and 10%, respectrely for LLNL; 13.28%and11.25%, respectrely for
otherDOE labs;and 15.67%and 15%, respedtvely amongacademiaespondentsThe variationsbetweendifferent
suney groupsareprobablynot significant.

Both the averageand maximum overheadsare significant. This is a substantiabmountof effort spenton build
issues Our smallsampleof 22 projectsat LLNL accountd for 18 full time emplo/eesspentannuallyon build issues.
If ournumbersareindeedrepresentatie of all DOE softwareprojects thetotal pricetagis notewvorthy.

We searchedor correlationsin our numericdata with plots and one-dimensionaleastsquaredegressions.We
thoughtperhapghatbuild overheadnight correlatewith someof the otherfactors.In additionto looking atthe plots,
we alsoevaluatedthe r-squaredactorfor the leastsquaredit. Both approacheed to the sameconclusion;the data
doesnot shav ary simplemeaningful correlationsetweeranswers.

Therewerealsosomeunantcipatedfeaturesof this surwey.

The averagenunber of programminglanguagegQuestion5) is surprisinglyhigh at 3.85. Having multiple lan-
guagesn apieceof softwareincreaseshe compleity of the saftwareaswell asthelevel of difficulty whenportingto
new architecturesThetop threelanguagesvereeasilyC, C++, and Fortran77.0ne DOE projectclaimedfirst place
in this questionwith 8 languayes,two LLNL projectstied for secondwith 7.

A secondnoteworthy result is that the overall averagenumberof requiredthird party libraries(Question6.a) is
alsohighat4.21. Theline betweenstandardandthird partylibrariesis far from clear For the purpose®f this suney,
we definedthird party librariesasarnything thatis not typically found on a UNIX operatingsystemand/orhaving a
distinctnameor projectwithin the DOE. For instancethe standardC++ runtimelibrary wasexcludedin the count,but
MPI wasincluded. This numberis anindicatorof softwarereuse.Lack of build tool suppat for handlingmultiple
third partylibrarieswasacommonlycited complaintin thefreeresponsesTherewasanecdotadvidenceto to suggest
thatthe work involvedin coordinatinga numberof third partylibrariesin the build doesnot scalewell, however the
numericaldatafrom this survey wasinconclusve. One projectinsistedthatthey hada stunning20 requiredthird
party librariesand only a 7.5% build overhead. Corverselythird placeresponseof 11 requiredlibraries reported
the maximumbuild overheadat 35.7%. The type of languageghe libraries are implementedn and the software
maintenancelevotedto thelibrary atits sourcearelik ely significantfactorsthatour survey failedto capture.

To summarizewhetheror not respondentselt their currentbuild systemwaslimiting (Question10), we found
23 indicatingthatit wasand21 indicatingthatit wasnot. In generalthe responsesvere neithertepid nor bi-polar,
but uniformly distributedacrossthe board. Respondentaerealsoaskedto rank their satishctionwith their current
build system(Quesions 13 and 14) on a scalefrom 1 to 10 wherel meant“hate it! wantto rewrite from scratch”
and 10 meant‘wouldn'’t change it for theworld” On this scale,the averagesatisdion with their currentprojects
build is 5.46. Broken out amongthe top threetools, averagesatistiction with malke (31 of the 39 responsesyvas

1This causedsomeconsternationparticularlyamongthosethatonly workedwith vendorsuppliedMP! libraries.

5.39. Saisfactionwith autoconf(19 out of 39 responsesaveragedat 5.47. Finally, averagesatisactionfor using
shellin their build (16 respamses)was4.56. Thesethreetoolswerethe only onesusal by a sizablepercentagef the
respondents.

Chapter 3

Extracting an Objective Measure from CVS

Developersdo nat recordthetime they spendon build issuesrs. codedevelopmentWhatis recordedhowever, is all

the changegnadeto every file within their softwarerepository We decidedto counteachchangeto eachfile asone
unit of work, andseeif this objectve measurevould supportor refutethe kinds of build overheadseportedin our
suney. We could have takeninto accountwhich changesrelarge andwhich onesaresmall, but therewereproblems
with this stratgyy. Large changesnay not adequatelyepresenthe time, thought,anddehuggingthatwentinto the
changesSimilarly, very smdl changesnaybetheresultof hoursandevendaysof hunting down areclusve bug.

TheComponerg Projectat LLN L [2] hasalread identifiedthe build asa majorimpedimento widespreadidop-
tion of componentechnologyin the DOE [5]. The multi-lab CommonComponen&rchitectue (CCA) Forum[1] has
alsoacknavledgedthis problemandhasaslkedthis samegroupto developacomponenpackagingstandard— clearly
anissuepertainingto the build.

The flagshipproductof the Component$rojectat LLNL is Babel[3, 4], atool thatenablesC, C++, FORTRAN
77, Python,and Java softwareto interoperag on variousplatformsusing compilersfrom variousvendors. All this
interoperabilitybrings aboutseriousconfigurationissuesin their build. This projectfollows currentbestpractices
from the Open Sourcecommunity(usingautoconf,automale, andlibtool) in managingthe build. Membersof this
projectcasuallyestimatethattheir build overheads a minimumof 20%.

As afirst step,we listedall the active files in their CVS repositoryandstated cateyorizingtheir function. All files
wereassignedn attribute from eachof the following four cateyories: Stage Source Visibility , andRole. A Stage
could be oneof original-form, intermediate-fornandfinal-form, dependingon whetherthatfile senedasinputto a
program,outputfrom oneprogramandinput to anotheyor simpy existedin its final form, respectiely. The Source
catagory denotedwhetherthe file was handmadethe outputof a programexecutedby the developer the outputof
a programexecutedby the user or simply reuseddirectly from anothersourcewith the attributeshandmadgedev-
genemted usergenerted andexternalrespectiely. The Visibility of afile waseitherdistributedwith the software,
or usedinternally. TheRole of thefile wasoneof core-code test-codeexample-codedocumentatiopbuild-support
version-supporttest-supportor example-supportThisis displayedgraphicdly in Fig 3.1.

To understandhow thesecakgoriesinteract, we will shov somefiles andhow they fit into thesecategories. The

Role
core-code
Stage Source test-code
— handmade Visibility example-code
original-form —)
. : dev-geneiated distributed documentation
intermediate-form .)
) usergenerated internal build-support
final-form .
external version-support
test-support
example-support]

Figure3.1: Categoriesassignd to all active filesin CVS repositoryof Babel

Stage files lines changes maxchange

intermediate-form 403 94,123 4,243 91

original-form 610 96,820 3,141 126

final-form 174 218,915 600 152
total 1,187 409,858 7,984

Table3.1: File counts Jine counts,numberof changesandmax. changedy stage

Source files lines changes maxchange
handmade 870 133,541 4,874 126
dev-geneated 311 253,358 3,104 152
external 6 22,959 6 1
usergeneated 0 0 0 0
total 1,187 409,858 7,984

Table3.2: File counts line counts,numberof changesndmax. changesy source

README file would befinal-form handmadedistributed documentationSinceBabelusesautomale andautoconfall
Makef i | e. amfiles areoriginal-form, handmadedistributed build-support automale thengeneratesheresulting
Makef il e. i n files which areintermediate-formdev-geneiated distributed build-support Actual Makefil e’'s
thatareproducedrom Makef i | e. i n’swouldbeconsideredinal-form, usergenerted internal, build-support but
Makefiles(alongwith most—hut not all— use-generatediles) arenot partof the CVS repository andhencearenot
includedin our analysidikethe Makef i | e. amandMakefil e. i n filesare.

To understandvhattheseattributesmean,it would be helpful to know thethe numberof files, thenumtler of lines,
the numberof repositorycommitsinvolved. For the entire project,thesenumbersare 1,187files, 409,858lines, and
7,984commits.In Tables3.1-34 we breakout thesenumbersaccordingto eachattribute

Finally, in Table3.5we filter out all but the handmadédiles and examine their characteristic®y their Role. We
will restrictour discussiorto this tablein particular

3.1 Discussion

Table3.5is probablythe closestmeasuref humaneffort becausét focusesonthehandmaddiles. Thebuild support
files constitutel 3.7%o0f the overall line countand27.5%of the overall numberof changesBuild-supportis thethird
highestcategory by line countandseconchighestby number of changes.These numberssuggesthat build-support
is asignificantpercentagef overall developmentactiities. It alsosuggestshatdehuggingthebuild is ascomple as
dehugginga 18301line program

Developerscansafelyignore the dev-genergedfiles mostof thetime. However, it shouldbe notedthatendusers
may go wheredevelopersfearto tread. They may try to reador edit the dev-generatediles. For example,a user
might want changesomethingin the build by editing a Makefile asopposedo editing Makefile.amasa developer
would becaus¢hey do notunderstan@dutomale andautoconf.Suchuserswill likely be overwhelmedoy thesizeand
compl«ity of the Makefile'sin Babel. They arenotwritten for humanreadability

This metricthatwe devisedis coarseandimperfect,butit is objective. The27.5%of all changeseemsremarkably

Visibility files lines changes maxchange
distributed 1,105 407,964 7,617 152
internal 82 1,894 367

total 1,187 409,858 7,984

Table3.3: File counts Jine counts,numberof changesindmax. changedy visibility

10

Role files lines changes maxchange

build-support 415 98,746 4,224 152
core-code 205 68,867 1,666 49
test-code 213 30,896 1,253 19

documentation 145 176,918 326 17

test-support 109 8,520 297 48

version-support 59 376 109 5

example-code 27 2,399 88 9

example-support 14 23,136 21 2
total 1,187 409,858 7,984

Table3.4: File counts Jine counts,numberof changeandmax. changedy role

Role files lines changes maxchange
core-code 205 68,867 1,666 49
build-support 227 18,301 1,342 126
test-code 213 30,896 1,253 19
test-support 109 8,520 297 48
version-support 59 376 109 5
documentation 22 4,005 104 17
example-code 27 2,399 88 9
example-support 8 177 15 2
total 870 133,451 4,874

Table3.5: File cownts,line countsnumberof commits,andmaxcommitsfor ary file; for handmadédiles only broken
down by Role

11

consistenwith the 20% reportedbuild overhead.The gap betweenthesetwo narrovs even morewhenconsidering
thatthe first numberis probablydependat on developmenttime whereaghe build overheads measuredn overall
time.

On the otherhand,we mustacknavledgethat resultsareindicative andnot definitive. Similar detailedanalysis
acrossa rangeof projectswould be neededbeforeinvestingtoo muchfaith in the accurag of this metric. The best
we cansayhereis thata surprisingnumberof changesarebeing committed to the CVS repository If oneequates
changewith a unit of work, then a20%build overheador this projectshouldnot be surprisng.

12

Chapter 4

Conclusionsand Futur e Work

Developingand maintaininga projects build takesa significantpercenageof a projectsoverall developmenttime.
Time spenton the build distractsfrom core software developmentand developerproductvity. Pressuregor more
software reuse,more languageinteroperaility, and greaterportability will mostlikely causethis build overheadto
grow asapercentagef overall person/years.

Our suney shawvs tha peopleperceve the averagebuild overheal to be around12% with someprojectshaving
overheadup to 35%. We acknavledgethat our surney measuresnly perception®f the build overhead. To measure
the actualoverheadwe would needto monitor developeractiities andmaintaindetailediogs aboutwheretime was
being spent. Moreover, we acknavledge that the survey wasnot conductedover a true randomsampleof scientific
softwaredevelopersnor did it succeedn capturingsimplecorrelatiors betweenprojectcharacteristicendexpected
build overhead. This is not surprisingsincewe startedthe suney just to confirm that high build overheadsare not
localizedto our currentproject/location.

With softwarebuilds, thedevil is in thedetails.To arrive at somefunction

B = F(xy,z2,...,%,)

wherez; representidependentharateristicsof asoftwareprojectand B is expectedouild overheadequiredurther
study We would needa muchlargerandmoresophisticatedjuestiomnaire.We’d needto have the questionnaireveb-
enabledo getasigrificant sampleof scientificsoftwaredevelopers. More in-depthstudiesof otherprojects’software
repositoriesvould alsobeneededThesestudiesvould have to becondudedin concertwith adeveloperonthe project
sincethe procesof assigning attributesto actie filesis laborintensive, andprojed specific.

This avenueof investigation is only preliminary but it raisestwo very tantalizingquestionsthat remainunan-
swered:

1. How mary dollarsperyeardoes the currentbuild overheadcostthe DOE?

2. How closeis the currentbuild overheado the minimumpossible?

13

Appendix A

Raw data

14

Question #s

LLNL #s 1 2 3 4a 4b 5 6a 6b 7a 7b 8 (FTE's) 8 (percentage)
1 5 100.00% 4 3 0 3 7 1 5.00% 0.2 4.00%
2 5 50.00% 4 5 3 4 3 0 30.00% 0.5 10.00%
3 20 80.00% 3 4 2 7 20 0 10.00% 15 7.50%
9 3 90.00% 1 4 0 4 1 2 10.00% 10.00% 0.1 3.33%

11 7 100.00% 2 2 0 4 11 3 5.00% 25 35.71%
12 50.00% 2 5 2 2 2 1 0.00% 0.00% 0.1
13 2 1 8 0 2 1 0 0.2 10.00%
14 4 50.00% 2 2 4 4 2 2 70.00%
16 1.25 50.00% 3 3 1 1 3 3 0.00% 0 0.00%
17 1 20.00% 2 4 1 2 4 2 20.00% 0.2 20.00%
18 20 90.00% 4 2 2 6 10 2 70.00% 2.5 12.50%
19 6 100.00% 2 6 0 4 8 8 10.00% 0.3 5.00%
20 5 80.00% 2 3 2 4 1 0 10.00% 10.00% 0.5 10.00%
21 3 100.00% 3 6 2 1 1 1 0.00% 0.00% 0 0.00%
22 8.75 100.00% 2 3 1 3 0 0 1.00% 1.00% 0.01 0.11%
23 5 75.00% 1 3 1 3 6 1 5.00% 0.25 5.00%
24 5 100.00% 3 5 0 6 0 6 25.00% 15.00% 0.75 15.00%
25 6 66.00% 4 12 3 3 2 10 0.00% 0.00% 1 16.67%
26 5.5 100.00% 4 3 3 7 50.00% 20.00% 1 18.18%
27 30 90.00% 2 3 4 5 15 0 75.00% 5 16.67%
28 8 80.00% 4 5 0 3 10 100.00% 80.00% 1.5 18.75%
29 0.1 10.00% 5 10 2 2 1 3 10.00% 0.01 10.00%
DOE #'
4 2 80.00% 3 6 2 6 5 2 10.00% 20.00% 0.25 12.50%
5 5 100.00% 5 10 0 6 2 20 50.00% 15 30.00%
6 4 70.00% 2 3 3 1 5.00%
7 4.5 100.00% 6 9 4 2 10 20.00% 15 33.33%
8 1 30.00% 2 4 1 4 2 5 5.00% 0.1 10.00%
10 10 50.00% 3 9 0 4 2 10 5.00%
30 0.5 50.00% 3 3 8 2 0 5.00% 5.00%
31 2 50.00% 3 2 0 4 5 0 20.00% 25.00% 0.25 12.50%
32 1 50.00% 2 3 4 2 1 45.00% 5.00% 0.04 4.00%
37 2.5 75.00% 3 7 0 5 2 1 10.00% 11.00% 0.01 0.40%
39 20 100.00% 2 5 2 2 7 1 5.00% 3.00% 0.7 3.50%
Academic #'s
15 6 100.00% 3 4 2 2 0 33.00% 1.7 28.33%
33 20 75.00% 2 4 1 3 10 10 5.00% 2.00% 0.5 2.50%
34 20 100.00% 1 2 0 2 0 8 2.00% 2.00% N/C
35 10 40.00% 2 6 1 5 1 3 11.25% 15 15.00%
36 9 25.00% 2 5 1 4 2 0 0.00% 0.00% 1.125 12.50%
38 9 80.00% 4 5 2 4 5 1 15.00% 1.8 20.00%

TableA.1: Rav numericproject data(partl)

15

Question #'s

LLNL #s 9 (weeks) 12 (min hours) 12 (max hours) 13a 13b 13c 13d 13e 13f 13g 13h 13i 13] 14
1 15 1.5 6 8 8 6
2 1 1 1 9 7 7 5
3 3 4 4 8 1 4
9 0.1 0.03 0.03 5 5
11 28 1 1 4 7 7 6
12 2 0.1 0.1 9
13 3 0.03 0.03 4
14 0.025 0.167 8 3
16 0.33 0.33 6 10 8
17 12 0.5 1 7
18 0.25 1 6 6 7 2
19 4 0.025 0.33
20 Yes 5 5 5
21 0 2 2 5 5 5
22 0.2 0.08 0.08 5 6 5
23 3 0.66 1 6 6
24 50 0.5 3 3 1 2 3
25 Yes 0.66 12 5 5 5 6
26 16 0.167 5 1 1 1 1 1 1
27 0.25 2 5 5 4
28 2 2 8 6 2 8
29 16 15 3 9
DOE #

4 0.5 1 1 5 8 7 8

5 16 1 5 5 1 7

6 0.03 0.03 6 6

7 0.167 0.167 1 6 1 1 1 10 1

8 0.08 0.08 5 5 7
10 3 5 5
30 5 5 5
31 0.08 0.17 6 6 9 7
32 0.17 0.17 2 6 5
37 4 0.08 0.08 10 8 8 8
39 25 0.3 3 8 8

Academic #'s

15 0.7 0.7
33 1 2 4 2 7.31
34 0 8 8
35 30 0.5 1 6 7 4
36 12 0.05 1 1 3
38 0.6 2 7 3

TableA.2: Rav numericprgect data(partl)

16

LLNL DOE Academic

Interest (16) | days spent (17) | Interest (16) | days spent (17) | Interest (16) | days spent (17)
1 8 12,5
2 3 5
3 8 15
4 3 15
5 8 250
6 7 4
7 5 3
8 10 3
9 10 88
10 5 5
11 10 3
12 8 0.25
13 9 2
14 7 0.5
15 1 1
16 8 2
17 9 2
18 8 0.5
19 10 5
20 0
21 5 1
22 10 5
23 3 3
24 10 22
25 9 0.25
26 6 2
27 2 0.25
28 4 0.02
29 5 2
30 5 10
31 3
32 7 5
33 9 0.04
34 9 0.5
35 7 1
36 8 15
37
38
39
40

TableA.3: Raw datafor personaquestions

17

Bibliography

[1] The CommonComponentrchitecture(CCA) ForumWebsite.www. cca- f or um or g.
[2] components@IInl.goWebsite. www. | | nl . gov/ CASC/ conponent s.

[3] Tom Epperly ScottKohn,andGary Kumfert. Componentechnologyfor high-peformancescientificsimulation
software. In Working Conferenceon Softwae Architecturesfor Scientific ComputingApplications Ottowa, On-
tario, CanadaOctober2000. InternationalFederatiorfor Information Processing.Also available asLawrence
LivermoreNationalLaboraory technicalreportUCRL-JC-140549.

[4] ScottKohn, Gary Kumfert Jef Painter and Cal Ribbens. Divorcing languagedependenciefrom a scientific
softwarelibrary. In 10th SIAM Confeenceon Parallel ProcessingPortsmouthVA, March 2001. Also available
asLawrenceLivermoreNational LaboratorytechnicalreportUCRL-JC-140349.

[5] Gary Kumfert, Bill Bosl, TamaraDahlgren,Tom Epperly ScottKohn, and Steve Smith. Achieving Languaye
Interopembility Using Babel CASC/ISCRWorkshopon ComponentndObject-Orientedlechnologiesor Sci-
entific Computing WenteVineyards,Livermore,CA, July 2001.

18

